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Electronic Coupling in C-Clamp-Shaped Molecules:
Solvent-Mediated Superexchange Pathways

probe solvent mediation of D/A coupling, C-clamp-shaped
DSAs 2—4 were preparetand their fluorescence dynamics
investigated. In these molecules, a direct line from D to A
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R = COMe

Electron transfer (eT) rate constants are determined, in part,
by the magnitude of donor (D)/acceptor (A) electronic coupling,
[V]. When the D and A are separated beyond van der Waals
contact, the intervening medium may mediate D/A coupling
across rigid media, such as covalent spatennteins? and
frozen glasse%has been extensively investigated. The forma-
tion and recombination reactions of solvent-separated ion pairs
have demonstrated that liquid solvents may also medi4te
The geometries at which the latter reactions occur are not well
characterized. Herein, we report (1) electronic coupling medi-
ated byfluid solvent in C-clamp-shaped-E5(pacery-A mol-
ecules possessing well-defined D/A separations and orientations
and (2) the dependence pf| on solvent electronic structure.

Superexchange models are frequently used to interpret the
dependence ofV| on the intervening medium’s structut&®
According to these models, the D/A coupling and its distance
dependencdi, are determined, in part, by the difference between

the mediating and tunneling state energigs, D/A environ- crosses a cavity large enough to accommodate one or more
ments possessing mediating state energies proximate to thesplvent molecules. Furthermore, bond-mediated coupling be-

1 [CPK]

4[CPK]

tunneling energy should produce larg#.2 In an effort to
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|V|'s for the photoinduced electron transfer reactions {B*
A) of 1—4 in CHsCN, GsHsCN, and (CH),NCOCH; (DMA)
were determined (Table 1) from the temperature depenédénce
of eT rate constants. Semiclassical models express the eT rate
constant as a product ¢¥|2 and a Franck Condon weighted
density of state&® A priori calculations of the latter are difficult,
thus the need for temperature dependent measurements to extract
[V|. The solvent dependence pf| in 1 serves to check the
validity of extracting|V| from temperature dependence data.
For 1, which is nearly linear, solvent inclusive superexchange
pathways are longer than through-bond pathways and should
contribute little to the coupling. As th&/|'s determined forl
in all three solvents are very similar, the approach appears to
be reliable.

The most striking results in Table 1 are thege andsolvent
dependentV|’s found for4. Three sources of coupling may
be advanced to explain these results: (1) through-bond coupling
“paths” unique to the spacer id, (2) through-space D/A
coupling, and (3) solvent-mediated D/A coupling. Unique
coupling paths might arise from the proximity of three sets of
C—H bonds which line the interior cavity @f'4 Although such
paths might produce larger coupling than found across the
shorter spacer ifh, they do not account for the observed solvent
dependence. Furthermore, calculations find small, in vacuo D/A
couplings €0.5 cnt?) in 4.15 Direct, through-space coupling
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formed D'S™A, where S is solvent or spacer.
(8) The correlation betweejv| and |A|~ fails for small|A|.%¢

(11) DSAs2—4 have the same symmetry, D, and Ala§ he symmetry
constraint on spacer-mediated coupling is comparable-i#.15
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Table 1. Geometric Parameters, D*/A Electronic Coupliny/|}
and Low-Frequency Reorganization Energdy) (at 295 K in1—4

1 2 3 &
Roa,2A 11.5 10.2 10.6 7.1
bonds in spacér 7 9 10 9
[V].cmt
CHsCN 15.14 1.4d 31+ 1.5 21.0+26
(CH3),NCOCH; 14.2+ 1.7 149+ 2.9
CeHsCN 125+ 1.4 6.8+0.8 89+1.0C 63.7+8.6°
/ls, eV
CHsCN 1.52+ 0.26 1.50+ 0.26° 1.47+ 0.5¢°

(CH3)2NCOCH; 1.36:+ 0.24 1.154 0.4#
CeHsCN 1.144 0.24 1.09+ 0.24 1.16+ 0.25 1.40+ 0.50
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value is comparable tdssfound in contact ion pair® Transfer

of an electron from D* to PhCN is nearly thermoneutral in
CH3CN.2122 Thus, it is reasonable that the™@PhCN")A
mediating state fod, with PhCN within the cavity, lies~0.5
eV above the eT transition state.

The energy gap)\, may be altered through variation of either
the mediating or tunneling state energy. Studies of charge shift
kinetics from Miller's laboratory have demonstrated titht
depends on the tunneling electron enetyylhe present results
demonstrate the dependence | on the mediating state
energy!® Additionally, this study demonstrates that solvent-
mediated pathways can dominate D/A coupling in covalently

aCenter to center distance obtained from the calculated CT state linked system$® Disorder and rapid fluctuations within the

dipole moment® ® Minimum number of bonds in spacer separating
D and A.¢Uncertainty represents 2 standard deviatioh&°(295)
range—0.5t0—0.7 eV (MeCN, (CH),NCOCH;) or —0.4t0—0.6 eV
(PhCN)?#2 9 Previously reported as 5.4 ci with AG® and s treated
as temperature independéfit® Uncertainty represents two standard
deviations. AG° range—0.5 to —1.0 eV??

within 4 could be significant in conformations with small D/A
separation. Molecular mechanics calculatiéhindicate that

solvent pathways may reduce the magni#idad distance over
which solvent-mediated coupling can be effective.

Fluctuation in D/A coupling associated with solvent motfon
amounts to a breakdown in the Condon approximation and may
alter the proper theoretical description of electron transfer rate
constant§™26 The conventional assumption thif| is tem-
perature independent may not be appropriate. The fitting results
for 1s (295 K) in Table 1 may contain evidence of these effects.

fewer than 0.01% of DSA molecules access conformations with Whereas the magnitudes and solvent dependencds fufr

D/A separations of 5.5 A or less at 300 K. The magnitude of
through-spacéV| at this separation is calculated to be less than
8 cnm 11516 Additionally, Closset al. concluded that through-
space coupling is not significant in a 2,7-diaxially substituted
trans-decalin with arequilibrium D/A separation of 6.2 A7
Thus, a strong case for through-space coupling in 2S#an
not be madé?

The |V|'s determined for4 are consistent with models of

(solvent-mediated) superexchange. First, Molecular Mechanics
calculations confirm that solvent molecules readily access

unsymmetrical positions within the cavity, with respect to the
DSA symmetry plane. Properly placed solvent orbitals may
interact simultaneously with both symmetric and antisymmetric
orbitals of the DSA, thus generating non-“symmetry forbidden”
pathways for the D/A interaction. Second, AM1 gas phase
calculations place the LUMO of PhCN 1 eV lower in energy
than the LUMOs of MeCN and DMA? The perturbation
expression for a single step, superexchange coupfifiis |V|

= (Hs9%A, where Hgs is the exchange interaction between
adjacent molecules. ApproximatimgMeCN) — A(PhCN)=

1 eV andH{MeCN) = Hs{PhCN), theV|’s for DSA 4 (Table

1) yield A(PhCN)= 0.48 eV andHss = 500 cntl. The latter
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100 K range) were fitted to the semiclassical expression for eT rate
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ALs(T — 295 K). AAG°(T — 295K) andAAg(T — 295K) were calculated
using standard continuum modéts4.5 A for the D and A radiiRcc given
in Table 1, and literature values fondT and dés)/dT.12b As AG°(295 K)
are not known, a range of values (see natende in Table 1) for this

DSAs1—3 are consistent with conventional modelsigf’ the
values for4 are larger than predicted, particularly ighGCN.

As solvent-mediated coupling fat in CgHsCN is large and
sensitive to solvent position within the C-clamp cavitythe
barrier to eT may contain additional terms derived from
accessing solvent configurations with favoraplg It will be
interesting to pursue this issue using more complete theoretical
models of through-solvent coupling.
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